From: http://www-3.unipv.it/cibra/edu_spectrogram_uk.html
To analyze sounds it is required to have an acoustic receiver (a microphone, an hydrophone or a vibration transducer) and an analyzer suitable for the frequencies of the signals we want to measure. Eventually, a recorder may allow to permanently store the sounds to allow later analyses or playbacks.
A spectrograph transforms sounds into images to make "visible", and thus measurable and comparable, sound features the human hear can't perceive. Spectrograms (also called sonograms or sonagrams) may show infrasounds, like those emitted by some large whales or by elephants, as well as ultrasounds, like those emitted by echolocating dolphins and by echolocating bats, but also emitted by insects and small rodents.
Spectrograms may reveal features, like fast frequency or amplitude modulations we can't hear even if they lie within our hearing frequency limits (30 Hz - 16 kHz). Spectrograms are widely used to show the features of animal voices, of the human voice and also of machinery noise.
A real-time spectrograph displays continuously the results of the analyses on the incoming sounds with a very small - often not perceivable - delay. This kind of instrumentation is very useful in field research because it allows to continuously monitor the sounds received by the sensors, to immediately evaluate their features, and to classify the received signals. A spectrograph can be dedicated instrument or a normal computer equipped with suitable hardware for receiving and digitizing sounds and a software to analyze sounds and convert them into a graphical representation.
Normally, a spectrogram represents the time on the x axis, frequency on the y axis and the amplitude of the signals by using a scale of grays or a scale of colours. In some applications, in particular those related with military uses, the x and y axes are swapped.
The quality and features of a spectrogram are controlled by a set of parameters. A default set can be used for generic display, but some parameters can be changed to optimize the display of specific features of the signals.
Also, by modifying the colour scale it is possible to optimize the display of the amplitude range of interest.
No comments:
Post a Comment